Premier MRI-Guided Radiotherapy Technology Enables Real-Time Tumor Tracking

Radiotherapy is a core element of prostate cancer treatment, yielding cures in men with localized disease. The goal of prostate cancer radiotherapy is to deliver high doses of radiation to the prostate gland while avoiding the surrounding bladder and rectum, thus preventing unwanted urinary and gastrointestinal side effects and preserving patient quality of life.

Radiotherapy guided by magnetic resonance imaging (MRI) allows clinicians to visualize a tumor as well as its neighboring organs in order to most accurately deliver treatment to the target region.

Weill Cornell Medicine and NewYork-Presbyterian Hospital (WCM/NYP) are proud to be the first – and only – medical institution in the northeast to offer patients the most premier MRI-guided radiotherapy technology available: the MRIdian Linear Accelerator, by ViewRay. The MRIdian Linac’s unique ability to track a patient’s tumor in real time during treatment makes it by far the most advanced modality of delivering radiation.

Real-time visualization is significant due to the constant flux of internal human anatomy, including changes in respiration, digestion and bladder fill that can influence the position of the prostate within the body. Even a minor shift of the tumor target during treatment can have major implications related to potential side effects of radiation. If the bladder or rectum displace the prostate during treatment, the MRIdian Linac machine will cease delivery of radiation and not resume until the prostate moves back in bounds of the target region. Whereas other modalities track small fiducial markers implanted in the prostate, this machine allows clinicians to see and track the tumor itself.

In addition, WCM/NYP is the only center in the area to offer combined use of MRI-guided radiotherapy with the rectal SpaceOAR, a hydrogel barrier that is temporarily placed between the prostate and rectum to shield the rectum from radiation and further reduce potential side effects.

Watch the video below to learn more about this state-of-the-art technology from WCM/NYP radiation oncologist Dr. Himanshu Nagar.

 

Targeting Prostate-Specific Membrane Antigen (PSMA)

Our team is at the forefront of utilizing prostate-specific membrane antigen (PSMA)-targeted therapies in the treatment of prostate cancer.

PSMA is a protein on the surface of prostate cancer cells that enables a targeted approach to locate and image or treat these cells wherever they are in the body, even those that have escaped (metastasized) to other organs. We are able to target PSMA using different types of drugs, including small molecules and antibodies.

Targeting Prostate-Specific Membrane Antigen (PSMA)

Learn more about how we use antibodies and small molecules to target PSMA.

For examples of our work in action, browse open prostate cancer clinical trials at Weill Cornell Medicine and NewYork-Presbyterian.

2018 in Review: Advancements and Accomplishments

From delivering exceptional care in the clinic, to presenting at scientific conferences and publishing research in high-impact medical journals, our Genitourinary (GU) Oncology Program had an exceptionally busy 2018. We continue to work diligently to develop new and more effective therapies to treat advanced prostate, bladder and kidney cancers, while educating the community about cutting-edge advancements in the field.

As we look back on 2018, we wish to share a brief update of our research and accomplishments. Here’s what our team has been up to over the past year.

New Faces
Most recently, we were proud to welcome Dr. Cora Sternberg, a global thought-leader in the GU oncology space, to our team. Dr. Sternberg will facilitate the continued growth and development of clinical and translational research programs in GU malignancies, as well as serve as Clinical Director of the Englander Institute for Precision Medicine (EIPM) to develop strategies to incorporate genomic sequencing and precision medicine within our Program and across Weill Cornell Medicine and NewYork-Presbyterian.


New Events
More than 200 prostate cancer patients and loved ones attended our inaugural New York City Prostate Cancer Summit, a multi-institutional collaboration between Weill Cornell Medicine, NewYork-Presbyterian Hospital, Columbia University Irving Medical Center and Memorial Sloan Kettering Cancer Center. This educational and advocacy event featured presentations and panel discussions from local medical experts and national advocacy leaders, with topics including nutrition, screening, coping and anxiety, immunotherapy and much more. Our second annual Summit is slated for September 2019 during Prostate Cancer Awareness Month. Stay tuned for details.


New Research Developments

Prostate Cancer

• Based upon our prior work with fractionated dosing of our radiolabeled antibody 177Lu-J591, we performed the world’s first phase 1 dose-escalation trial of 177Lu-PSMA-617 without finding any dose-limiting toxicity (no major side effects despite higher and higher doses), presenting the initial results at the European Society for Medical Oncology (ESMO) 2018 Congress. The phase II portion of the trial is ongoing. We are also leading the first trial combining two different targeting agents (J591 and PSMA-617) designed to deliver more radiation to tumors and less to other organs.

•  Alpha particles are several thousand-fold more potent than beta-emitters such as 177 Lu. We are completing the phase 1 dose-escalation portion of the world’s first-ever clinical trial utilizing a powerful alpha particle (225Ac) directed almost exclusively at prostate cancer cells by linking it with our J591 antibody, which avoids salivary glands.

• As prostate-specific membrane antigen (PSMA) targeting enters “prime time,” the United States Department of Defense (DOD) has recognized our significant contributions to this evolving field with a grant that will allow us to research optimal patient selection for PSMA-targeted radionuclide therapy and assess the treatment’s immune effects.

• Thanks to developing technology utilizing circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA), we are able to draw information about a patient’s tumor via a simple blood test. In our findings published by the American Association for Cancer Research (AACR) Clinical Cancer Research journal, we analyzed the relationship between chemotherapy treatment and expression of androgen receptor (AR) variants in CTCs of men with metastatic prostate cancer.

• We led a phase II clinical trial through the Prostate Cancer Clinical Trials Consortium (PCCTC) and discovered that an aggressive subset of disease called neuroendocrine prostate cancer (NEPC) is driven by a gene with an associated target known as aurora kinase. Further investigation into targeting of the gene may help us to refine therapy for this difficult-to-treat patient population. Our findings were published as a cover story in Clinical Cancer Research. 

• Working with collaborators and funded by the Prostate Cancer Foundation (PCF), we have developed unique genomics sequencing methodology called PCF SELECT that allows us to identify actionable mutations in men with advanced prostate cancer.

Kidney Cancer

• The number of United States Food and Drug Administration (FDA)-approved drugs for patients with advanced kidney cancer continues to grow. Dr. Ana Molina leads our team in offering clinical trials focused on novel targeted agents, combination treatments, and risk-directed therapies for various subtypes of kidney cancer.

• Working together with the Englander Institute for Precision Medicine, we are evaluating genetic signatures from patient tumor specimens and developing organoids that can be used to test novel pathways and tailor treatment to each individual patient.

• Laboratory studies of our in vivo kidney cancer models have resulted in discoveries regarding the metabolism of the disease. Understanding the role of the mitochondria (a cell’s power generator) in kidney cancer is leading us to novel therapeutic approaches to block tumors from growing and spreading.

Bladder Cancer

• Five immune therapies are now FDA-approved for people with advanced bladder cancer. We continue research to improve upon these agents by combining them with targeted therapeutics with the potential to replace chemotherapy. Collaboration with EIPM will help us to identify tumors most likely to benefit from these treatments.

• Dr. Bishoy Faltas and his lab team are focused on understanding the role of a specific family of proteins that cause mutations (genetic errors) that may be the underlying cause of bladder cancer. This research will enable us to develop new treatments to target the newly-identified genes that drive the disease.

• Based upon Dr. Faltas’ prior high-impact Nature Genetics publication that identified the genetic mechanisms by which bladder cancers become resistant to chemotherapy and new drug targets, we are launching an innovative new clinical trial utilizing a targeted drug that inhibits bladder cancer growth, the first time this type of drug is being tested in bladder cancer.

• We are conducting clinical trials of two antibody-drug conjugates (sacituzumab govitecan and enfortumab vedotin) designed to deliver potent chemotherapy-like toxins preferentially to cancer cells. This type of therapy is anticipated to become one of the standard approaches to bladder cancer treatment.

Precision Medicine

• Using samples of patient tumors (drawn via needle biopsy), we can create small 3-D tumor representations known as organoids that mimic the way that cancer cells grow within the body and respond to treatment. Our team has worked to develop this exciting new form of precision medicine, which is especially significant for rare cancers with a lack of preclinical models available for study.

We are moving closer to our ultimate goal of curing genitourinary cancers and look forward to continued progress in the years ahead.