Bladder Cancer Treatment Options

The bladder is an organ in the lower pelvis responsible for storing urine. When cells in the bladder start to grow out of control, they can form tumors leading to bladder cancer.

Urothelial cancer is the most common form of bladder cancer and impacts around 80,000 people per year. This form of bladder cancer starts in the urothelial cells that line the inside of the bladder. Urothelial cancer may also occur in other areas of the urinary lining such as the inside of the kidneys (renal pelvis) and the tubes connecting the kidneys to the bladder (ureters)

The Weill Cornell Medicine Genitourinary (GU) Oncology Program works with a wide range of GU specialists to tailor treatments for each patient depending on their disease type and if they have metastatic disease, which is when the cancer has left the bladder or other areas of the urinary system and spread to other parts of the body through the lymph nodes or bloodstream.

Here are some of the treatment options offered for bladder cancer patients.

Chemotherapy

Chemotherapy is a common treatment option for patients with bladder cancer and can be given at a number of times throughout the treatment process. Chemotherapy may be given directly into the bladder or into veins before surgery to make a tumor easier to remove, after surgery or radiation to kill remaining cancer cells, or as a main treatment option for patients with metastatic disease.

Radiation Therapy

Another type of treatment used for bladder cancer is radiation. Radiation may also be given throughout the treatment process. It can be used after surgery, as a main treatment for earlier-stage cancers that may not require or be able to receive surgery or chemotherapy, or as part of a treatment regimen for advanced or metastatic disease. Radiation is often given along with chemotherapy to help the radiation work better, which is known as chemoradiation.

Stereotactic body radiation therapy (SBRT) is a type of radiation therapy that uses x-rays to kill tumor cells. This method is able to deliver radiation precisely to the tumors and may kill tumor cells with fewer doses over a shorter period compared to other types of radiation.

Immunotherapy

Immunotherapy drugs help the body’s immune system fight cancer by instructing the immune system to identify and destroy cancer cells.

There are a number of approved immunotherapy options that may be given to patients in a variety of different circumstances. Immunotherapy can be used in patients with non-muscle invasive bladder cancer though instillation in the bladder, into veins as an additional therapy after surgery, or into veins for advanced cancer.

One of the most common versions of immunotherapy are drugs called immune checkpoint inhibitors. Immune checkpoints are part of the natural body to keep the immune system from attacking normal cells (when this happens, we call it “autoimmunity”). Checkpoint inhibitors target “checkpoints”, or proteins on the immune cells, that cancer cells use to hide from the immune system. These drugs block the checkpoints allowing the body’s immune system to attack the cancer.

Surgery

Surgery is often done before or after other treatments in order to best maximize the results. A number of surgical techniques and options exist depending on the type of bladder cancer and whether or not it has spread beyond the urinary system. These range from endoscopic techniques where a tube is inserted into the urinary system to using cameras (often with the assistance of a robot) to open surgery with incisions through the skin. Sometimes the bladder needs to be removed and there are a number of techniques to either divert urine to the skin (often with a bag) or creation of a new bladder (called neobladder).

Clinical Trials

The Weill Cornell Medicine Genitourinary (GU) Oncology Program leads and participates in a number of clinical trials across a spectrum of disease areas, including bladder cancer. Our team is dedicated to evaluating new diagnostic and treatment approaches in order to develop the best options that benefit our patients. Clinical trials may be the right choice for some patients, and we encourage you to speak to your doctor about the options available to you.

Our team is currently leading a clinical trial evaluating the effects of adding radiation therapy to the immunotherapy drug atezolizumab, for the treatment of metastatic bladder cancer. The aim of this trial is to identify if the combination of radiation and immunotherapy may have the ability to boost the results of the immunotherapy drugs and may be more effective at killing tumor cells. Learn more about this trial here.

Another interesting trial has been developed based upon the laboratory work of one of our team members. For patients with bladder cancer invading the muscle layer and needing removal of the bladder (called cystectomy), the usual approach is chemotherapy followed by surgery. However, not all patients are able to safely receive the most effective chemotherapy drug called cisplatin. This trial is evaluating the use of an oral targeted drug called abemaciclib to take prior to surgery for these patients. Learn more about this trial here.

Antibody-drug conjugates are a type of targeted chemotherapy. To date, two have been approved by the U.S. Food and Drug Administration (FDA) in various situations. We currently have trials open to enrollment testing two of these antibody-drug conjugates, enfortumab and IMMU-132, either alone or in combination with other drugs.

Our team is continuously working on new research initiatives and clinical trial participation. You can find a full list of our open bladder cancer trials here.

AACR 2017: PSMA Update

Jaspreet Batra_AACR 2017_PSMA
Jaspreet Batra presents this research at AACR 2017

At the 2017 Annual Meeting for the Annual Association for Cancer Research (AACR), we presented research highlighting how we’re targeting PSMA – a marker on the surface of most prostate cancer cells – with radioimmunotherapy to kill cancer cells.

Radioimmunotherapy involves attaching radioactive particles to targeted immunotherapies that go directly to the cancer cells. The monoclonal antibody we use is called J591 and will bind only to PSMA. In this research, we attached the radioactive isotope actinium-225 (225Ac) to J591. We have used J591 linked with lutetium 177 (177Lu) and yttrium 90 (90Y) to treat patients in many clinical trials in the past. We believe that since 225Ac is an alpha particle emitter with much greater energy released that each individual antibody will lead to more tumor cell death. In our experimental models presented at the 2017 AACR meeting, 225Ac-J591 was not significantly more toxic than control (similar to placebo) in mice without tumors. When we treated mice with prostate cancer tumors, there was significant tumor killing following a single injection of 225Ac-J591.

Given our long history of administering radiolabeled J591 to hundreds of men in different clinical trials, we have plans to launch a phase I dose-escalation clinical trial (to determine safe doses and later look at tumor response) later this year. We and others are quite enthusiastic about this approach.

Using Radiation, Radioimmunotherapy and Radioactive Isotopes such as Lutetium 177 to Treat Prostate Cancer

Radiation is a mainstay in the treatment of prostate cancer. In men with localized prostate cancer (confined to the prostate gland), using radiation can help cure the cancer. In men with advanced disease, radiation can improve survival and help to manage pain.

Radiation can be delivered a variety of different ways. For example, there are external beams that can be used to deliver radiation from an external machine into the prostate, radioactive “seeds” that can be implanted, or ways to inject special radioactive isotopes directly into the bloodstream.

In the United States (U.S.), there are older FDA-approved treatments utilizing radioactive isotopes for men with prostate cancer that has spread to the bones to decrease pain, called samarium-153 (brand name Quadramet) and strontium-89 (Metastron). More recently, a bone-targeted alpha particle called radium-223 (brand name Xofigo®) was approved because it leads to longer overall survival in men with symptomatic metastatic castration-resistant bone metastases. These bone-targeted radioisotopes have been useful because prostate cancer commonly spreads to bone. However, those drugs cannot treat other sites of tumors such as in the prostate, lymph nodes, or lung.

We are also able to use parts of the immune system as a way to deliver radioactive particles or other targeted cancer treatments to the prostate cancer. We have engineered very specific monoclonal antibodies and molecules that will bind only to PSMA, leading to the opportunity for “molecularly targeted” radiotherapy for prostate cancer. When we combine immunotherapy with monoclonal antibodies with radioactive isotopes, we call the treatment approach radioimmunotherapy. Radioimmunotherapy involves attaching a radioactive isotope (such as Lutetium 177) to a cancer-targeting antibody or small molecule that binds only to a specific cancer-related molecule on a tumor cell. This is similar to a “lock and key” scenario, where the antibody or molecule serves as a key that will only recognize a very specific lock (the cancer-related molecule). In prostate cancer, nearly all cells have a specific “lock” that lives on the surface of each cell called prostate-specific membrane antigen (PSMA).

j591_psmaFor nearly 15 years, we have been utilizing a monoclonal antibody known as J591, which is a version of a specific key that will only recognize and enter cells with the specific lock PSMA. We successfully utilized this antibody tagged with small radioactive particles to either visualize or treat prostate cancer tumors within the prostate, bone, lymph nodes, and other sites in the body. Our initial studies demonstrated safety and signaled anti-tumor efficacy. In addition, we showed that the antibody went to virtually all sites of tumors (sometimes discovering new ones) and did not target other normal organs (with the exception of the liver which helps clear the drug from the body). Subsequently, our larger studies have shown responses in larger numbers of patients. In Europe, physicians picked up on our results and Lutetium 177 (also known as Lu-177, 177-Lu or 177 Lutetium) has become a very popular radioactive particle that can be directed to prostate cancer via PSMA. It has been used to kill prostate cancer cells and treat hundreds of prostate cancer patients. This commonly-used approach uses a small molecule which recognizes PSMA to deliver Lu-177 to prostate cancer cells (termed radioligand therapy or radioimmunotherapy therapy).

Lutetium-177 PSMA therapy is associated with a good prostate cancer response and many men travel from all over the world to Europe in order to access this treatment. In the U.S. it is only available via clinical trials, and for more than 10 years, Weill Cornell Medicine and NewYork-Presbyterian have been one of the few centers in the U.S. to offer Lutetium 177 and other targeted treatments using radioactive particles.

Learn more about how this treatment works in this video:

%d bloggers like this: