Lutetium 177 Radioimmunotherapy Clinical Trial Open for Men with Rising PSA Levels

We have an open clinical trial using radioimmunotherapy for men who have been diagnosed with prostate cancer, and whose PSAs are rising despite initial hormonal therapy but have no evidence of metastatic disease on scans (no tumors seen on CT/MRI and bone scan). This clinical trial is investigating whether attaching Lutetium 177 with the monoclonal antibody J591 (177Lu-J591) can delay or prevent the disease progression to overt metastatic disease in men with “biochemical progression”.

J591 can recognize a protein antigen known as PSMA (also known as anti-prostate-specific membrane antigen) that is present on the surface of nearly all prostate cancer tumors and circulating tumor cells.

The targeted treatment in this trial uses J591 as a delivery vehicle for the radioactive treatment (Lutetium 177) to be delivered directly to the prostate cancer cells that may be hiding or circulating in the body (for example in lymph nodes, the blood stream or the bones).

The Lutetium 177-J591 treatment approach may be ideal for men who are experiencing rising PSA levels after primary prostate cancer treatment and early hormonal therapy, but whose bone and CT scans remain negative. Even though we can’t detect the presence of cancer on these traditional imaging scans, we know from prior research that these men have what we call “micro-metastatic” disease, meaning that the prostate cancer cells are increasing throughout the body because otherwise PSA levels would not be so high or increasing at such a rapid rate. Unfortunately, even with traditional hormonal manipulation, metastases become evident in these men after months. Although we have treated many men with overt metastatic prostate cancer and demonstrated anti-tumor responses, we have also shown that we are able to target these micro-metastatic sites (tumors that are too small to be seen on CT or bone scan), and the properties of 177-Lu make it more optimal for tumors that are too small to be seen on conventional imaging.

Many patients fall in this category in a broad sense and usually these men feel completely fine. Approximately 50,000 new men per year in the U.S. suffer a biochemical relapse (rising PSA after surgery or radiation) and some of these men will have further PSA rises despite the most common type or hormonal therapy, which are injections to bring down testosterone levels. The goal is to intervene earlier on in order to bring more men to cure and suppress the disease from further progression and metastases.

Men in this phase II study will be randomized and all patients will receive oral hormonal therapy as part of treatment which also serves to boost their PSMA level (i.e. increase the number of “locks” per tumor cell). Since PSMA is the target for 177Lu-J591, radioimmunotherapy increased expression of PSMA can lead to more targeting of the otherwise invisible tumor cells. Two-thirds of patients will receive 177Lu-J591 at the highest tolerated dose that improved outcomes based on our prior study and the remaining one-third will get J591 with a diagnostic isotope (111Indium). The isotope 111-Indium (abbreviated 111In) is also an energetic radioactive particle, but it does not generally give off enough energy to kill cancer cells while still allowing researchers to take more detailed pictures of where the prostate cancer is located in the body.

Our goal is to ultimately cure the men who fall in this category by eradicating microscopic deposits of cancer, and the Weill Cornell Genitourinary Oncology team is available for patient consultations and to speak with physicians who are interested in referring patients to this trial, which is available at a number of sites across the country.

Learn more about how this treatment works in this article and video:

Dying from Prostate Cancer: Lessons Learned from the PLCO Trial

Screening for any disease, including prostate cancer remains imperfect. One study, the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial, was a National Cancer Institute (NCI) sponsored study that took place between 1993-2001. The goal of the trial was to investigate the impact cancer screening had on dying from these four common tumor types. There were 76,693 men evaluated in the prostate cancer portion of the study.

While some aspects of this randomized trial remain controversial, including the impact that screening had on dying from prostate cancer, it remains a rich prospective dataset for further analysis, as it is one of the largest longitudinal studies ever conducted of men with prostate cancer.

In the “intervention” arm of the PLCO Screening Trial in which men were randomized to be screened for prostate cancer with annual prostate specific antigen (PSA) blood tests and digital prostate exams, there was still an unfortunate set of men who died from prostate cancer. Because the goal of the trial was to determine the prostate cancer mortality differences between the two arms, an understanding of who died and how they died is extremely important.

In a study led by Weill Cornell Medicine’s Dr. Chris Barbieri, we examined how men died of prostate cancer. Dr. Sameer Mittal presented the results of the research at an oral podium presentation yesterday at the 2016 American Urological Association annual meeting, with full results simultaneously published in European Urology.

Of 38,340 men in the screening arm, 151 died of prostate cancer. After graphing their oncologic courses of diagnosis and treatment, we noted a few interesting trends. The most prominent were as follows:

  • More than 50% of the men who died (81 men) either were never screened before this test or had their first PSA test result that was positive. These men were older and had higher median PSA (13.7). It’s possible that if these men were actually screened and or screened earlier and treated, their deaths from prostate cancer could have been prevented.
  • A subgroup of men who died despite screening were young and had a low median PSA (2.0). Surprisingly, they died within approximately 1.5 years of diagnosis. To put this in perspective, we expect an average man diagnosed with metastatic prostate cancer to live for 5 years, so this is quite unusual. We know that some subsets of prostate cancer do not secrete high levels of PSA and this is an area that needs more research in order to prevent further deaths. We don’t know for sure if these men had neuroendocrine prostate cancer (NEPC), but their rapid disease course seems consistent with this aggressive prostate cancer sub-type.

Despite what some may believe, some men do die of prostate cancer. We continue to research why this is the case in order to prevent further death and suffering from this common disease. These study insights underscore the importance of developing diagnostic biomarkers to better detect aggressive prostate cancers and to best predict the way the cancer will respond to various treatments.

Free Prostate Cancer Screening at Weill Cornell on September 19th

6th Annual Free Prostate Cancer Screening

When: Wednesday, September 19th
7:00 am to 5:00 pm
Where: New York-Presbyterian Hospital
525 East 68th Street (at York Avenue)
Payson Pavilion 2nd floor, Room F260
  • No appointment necessary for men over 40
  • Screening involves a PSA blood test and a prostate (DRE) exam
  • This is a screening test and is not for men already diagnosed with prostate cancer

For more information, please call (212) 746-5450

 

NYP/Weill Cornell Campus Map

Click on the campus map on the left to enlarge and view the location of the Payson Pavilion.