At the annual American Association for Cancer Research in Washington, DC last week, Dr. Scott Tagawa presented updated combined analysis of 4 Phase I and Phase II studies involving 114 patients treated with ATL101. The analysis demonstrated that PSMA imaging might be used to predict the response to ATL101 radioimmunotherapy.ATL101 is a new targeted radiotherapy experimental drug for treating prostate cancer. ATL101 combines the humanized J591 monoclonal antibody targeting prostate-specific membrane antigen (PSMA) plus the Lutetium-177 radioisotope, creating the first tumor-specific delivery system able to target radiation to radio-sensitive prostate cancer cells wherever they are in the body.
From the sponsor’s press release:
14 patients were evaluable for semi-quantitative analysis of planar gamma images acquired after injection of ATL101 (35 patients from phase I at dose of 10-75 mCi/m²; 47 patients from Phase II at dose of 65-70 mCi/m² and 39 patients from phase I with a fractionated schedule at dose of 40-90 mCi/m²). 22 patients were also evaluable after injection of Indium-111 labeled J591 and treatment by Yttrium-90 labeled J591 at dose of 5-20mCi/m². Patients were sorted into 3 groups: low PSMA expression group included one third of patients, with no uptake (18%) or with weakly positive images (16%); high PSMA expression group included one half of patients, with tumor image as intense (26%) or more intense (24%) than liver. The 16 % remaining patients had intermediate uptake.
Significant correlation was found between higher PSMA expression (high vs. low) and higher response rates (RR) to treatment defined as >30% decline in PSA (RR=32% vs. 12.5%, p=0.01). RR was itself significantly correlated to longer survival. An association between PSMA expression by imaging and reduction in circulating tumor cell counts was also found (p=0.07). Further studies will examine quantitative molecular imaging with anti-PSMA PET/CT as recently published in animal models (Morris et al, 2013 ASCO Genitourinary Cancers Symposium).
Click here to read the complete press release.