Partnering to Detect Prostate Cancer

By Scott Tagawa, M.D.

Prostate cancer comes in many forms. Some tumors, however anxiety producing, are slow-growing tumors and simply require monitoring. And then, there are aggressive tumors that need treatment as soon as possible. Some times these aggressive tumors even spread microscopically prior to surgery or radiation without us knowing. By finding better ways to detect the types of prostate cancers that need to be treated, and as early as possible, we increase our cure rates and the number of people we’re able to treat effectively, while simultaneously minimizing interventions for those who don’t need them.

So where do we begin when it comes to detecting these aggressive tumors? And differentiating them from their less-aggressive counterparts?

Molecular imaging holds many of these answers, particularly for prostate cancer, as it offers a non-invasive way to detect the presence of cancer and distinguish between aggressive and non-aggressive sub-types. At the Weill Cornell Genitourinary (GU) Oncology Program, we’ve had a longstanding expertise in using molecular imaging to better diagnose and treat cancer.

Slide1
(Left) A traditional bone scan only shows one small possible site of metastases in the shoulder region of the bone, compared with the molecular imaging scan of the same patient (right) which indicates many metastases throughout the body.

Through our collaboration across multidisciplinary teams and with industry partners, at our academic medical center we have developed several imaging compounds, such as 99Tc-MIP 1404. This is a radiotracer used to more clearly “see” prostate cancer cells through their expression of the prostate-specific membrane antigen (PSMA). PSMA is a key biomarker in prostate cancer that is present on nearly all tumors. By using this target as a tracer, we can sometimes detect sites of tumors that were not evident on standard types of scans. In addition, the level of PSMA evident in prostate cancer cells can indicate whether the cancer is of a higher grade, more aggressive tumor within the prostate. Our patients were among the first to have received access to this technology. We’re currently leading a clinical trial that is pivotal to the FDA ultimately approving the widespread use of 99Tc-MIP 1404 to detect prostate cancer and help us ultimately determine the best course of treatment.

In part, due to this collaborative work, we were able to recruit the inventor of some of these imaging compounds, Dr. John Babich, to Weill Cornell Medicine in 2013. Collaboration is critical to scientific progress, and we are proud to be building on these accomplishments and forming new strategic partnerships in order to bring scientific discoveries to our patients more quickly than we would be able to if everyone worked in isolation.

It was recently announced that Weill Cornell Medicine has now formed a new research collaboration with Senior Scientific, LLC to investigate using non-radioactive magnetic nanoparticles to detect and diagnose prostate cancer. The combination of molecular nuclear medicine imaging with the magnetic relaxometry (MRX) technology may lead to improvements for many of the thousands of men facing the diagnosis of prostate cancer. We look forward to working with Dr. John Babich to bring MRX technology to our patients and will keep you apprised of research progress.

One thought on “Partnering to Detect Prostate Cancer”

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: